A Discussion of Simultaneous Localization and Mapping

نویسنده

  • Udo Frese
چکیده

This paper aims at a discussion of the structure of the SLAM problem. The analysis is not strictly formal but based both on thought experiments and mathematical derivation. The first part highlights the structure of uncertainty of an estimated map with the key result being “Certainty of Relations despite Uncertainty of Positions”. A formal proof for approximate sparsity of so-called information matrices occurring in SLAM is sketched. It supports the above mentioned characterization and provides a foundation for algorithms based on sparse information matrices. Further, issues of nonlinearity and the duality between information and covariance matrices are discussed and related to common methods for solving SLAM. Finally, three requirements concerning map quality, storage space and computation time an ideal SLAM solution should have are proposed. The current state of the art is discussed with respect to these requirements including a formal specification of the term “map quality”.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots

In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...

متن کامل

Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments

Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...

متن کامل

Inkrinsic localization and mapping with 2 applications: diffusion mapping and marco polo localization

We investigate Intrinsic Localization and Mapping (ILM) for teams of mobile robots, a multi-robot variant of SLAM where the robots themselves are used as landmarks. We develop what is essentially a straightforward application of Bayesian estimation to the problem, and present two complimentary views on the associated optimization problem that provide insight into the problem and allows one to d...

متن کامل

Comparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei

Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...

متن کامل

Simultaneous Localization and Mapping - A Discussion

This papers provides two contributions to the problem of Simultaneous Localization and Mapping (SLAM): First we discuss properties of the problem itself and of the intended semantics of an uncertain map representation, with the main idea of “representing certainty of relations despite the uncertainty of positions”. We propose some requirements an ideal solution of SLAM should have concerning un...

متن کامل

Headslam - Head-mounted Simultaneous Localization and Mapping for Wearable Computing Applications

In this paper, we demonstrate how simultaneous localization and mapping techniques (SLAM) from robotics can be used in wearable computing to automatically create floor maps from sensor data recorded by a pedestrian. We give preliminary results based on different self-localization and motion models.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Auton. Robots

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2006